|
In mathematics, the multiple zeta functions are generalisations of the Riemann zeta function, defined by : ==Two parameters case== In the particular case of only two parameters we have (with s>1 and n,m integer): : : where are the generalized harmonic numbers. Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler: : where ''H''''n'' are the harmonic numbers. Special values of double zeta functions, with ''s'' > 0 and even, ''t'' > 1 and odd, but s+t=2N+1 (taking if necessary ''ζ''(0) = 0):〔 : \zeta(4) || |- | 3 || 2 || 0.228810397603353759768746148942 || |- | 4 || 2 || 0.088483382454368714294327839086 || |- | 5 || 2 || 0.038575124342753255505925464373 || |- | 6 || 2 || 0.017819740416835988 || |- | 2 || 3 || 0.711566197550572432096973806086 || |- | 3 || 3 || 0.213798868224592547099583574508 || |- | 4 || 3 || 0.085159822534833651406806018872 || |- | 5 || 3 || 0.037707672984847544011304782294 || |- | 2 || 4 || 0.674523914033968140491560608257 || |- | 3 || 4 || 0.207505014615732095907807605495 || |- | 4 || 4 || 0.083673113016495361614890436542 || |} Note that if we have irreducibles, i.e. these MZVs cannot be written as function of only.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Multiple zeta function」の詳細全文を読む スポンサード リンク
|