翻訳と辞書
Words near each other
・ Multiple Sleep Latency Test
・ Multiple Species Conservation Program
・ Multiple sub-Nyquist sampling encoding
・ Multiple subpial transection
・ Multiple Subscriber Number
・ Multiple sulfatase deficiency
・ Multiple system atrophy
・ Multiple Threat Alert Center
・ Multiple time dimensions
・ Multiple trace theory
・ Multiple treatments
・ Multiple unit
・ Multiple units of Ireland
・ Multiple use
・ Multiple working
Multiple zeta function
・ Multiple-alarm fire
・ Multiple-camera setup
・ Multiple-classification ripple-down rules
・ Multiple-conclusion logic
・ Multiple-criteria decision analysis
・ Multiple-effect distillation
・ Multiple-effect evaporator
・ Multiple-effect humidification
・ Multiple-emitter transistor
・ Multiple-image Network Graphics
・ Multiple-indicator kriging
・ Multiple-instance learning
・ Multiple-language version
・ Multiple-peril insurance


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multiple zeta function : ウィキペディア英語版
Multiple zeta function

In mathematics, the multiple zeta functions are generalisations of the Riemann zeta function, defined by
:
\zeta(s_1, \ldots, s_k) = \sum_ \ \frac} = \sum_ \ \prod_^k \frac^2,3)
==Two parameters case==

In the particular case of only two parameters we have (with s>1 and n,m integer):
:\zeta(s,t) = \sum_ \ \frac} = \sum_^ \frac^ \frac = \sum_^ \frac^ \frac
:\zeta(s,t)=\sum_^\infty \frac where H_ are the generalized harmonic numbers.
Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler:
:
\sum_^\infty \frac = \zeta(2,1) = \zeta(3) = \sum_^\infty \frac,
\!
where ''H''''n'' are the harmonic numbers.
Special values of double zeta functions, with ''s'' > 0 and even, ''t'' > 1 and odd, but s+t=2N+1 (taking if necessary ''ζ''(0) = 0):〔
:\zeta(s,t)=\zeta(s)\zeta(t)+\tfrac\Big()\zeta(s+t)-\sum_^\Big()\zeta(2r+1)\zeta(s+t-1-2r)

\zeta(4) ||
|-
| 3 || 2 || 0.228810397603353759768746148942 || 3\zeta(2)\zeta(3)-\tfrac\zeta(5)
|-
| 4 || 2 || 0.088483382454368714294327839086 || \left (\zeta(3)\right )^2-\tfrac\zeta(6)
|-
| 5 || 2 || 0.038575124342753255505925464373 || 5\zeta(2)\zeta(5)+2\zeta(3)\zeta(4)-11\zeta(7)
|-
| 6 || 2 || 0.017819740416835988 ||
|-
| 2 || 3 || 0.711566197550572432096973806086 || \tfrac\zeta(5)-2\zeta(2)\zeta(3)
|-
| 3 || 3 || 0.213798868224592547099583574508 || \tfrac\left (\left (\zeta(3)\right )^2 -\zeta(6)\right )
|-
| 4 || 3 || 0.085159822534833651406806018872 || 17\zeta(7)-10\zeta(2)\zeta(5)
|-
| 5 || 3 || 0.037707672984847544011304782294 || 5\zeta(3)\zeta(5)-\tfrac\zeta(8)-\tfrac\zeta(6,2)
|-
| 2 || 4 || 0.674523914033968140491560608257 || \tfrac\zeta(6)-\left (\zeta(3)\right )^2
|-
| 3 || 4 || 0.207505014615732095907807605495 || 10\zeta(2)\zeta(5)+\zeta(3)\zeta(4)-18\zeta(7)
|-
| 4 || 4 || 0.083673113016495361614890436542 || \tfrac\left (\left (\zeta(4)\right )^2 -\zeta(8)\right )
|}
Note that if s+t=2p+2 we have p/3 irreducibles, i.e. these MZVs cannot be written as function of \zeta(a) only.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multiple zeta function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.